1,875 research outputs found

    Landau level spectroscopy of ultrathin graphite layers

    Full text link
    Far infrared transmission experiments are performed on ultrathin epitaxial graphite samples in a magnetic field. The observed cyclotron resonance-like and electron-positron-like transitions are in excellent agreement with the expectations of a single-particle model of Dirac fermions in graphene, with an effective velocity of c* = 1.03 x 10^6 m/s.Comment: 4 pages 4 figures Slight revisions following referees' comments. One figure modifie

    Few layer graphene on SiC, pyrolitic graphite and graphene: a Raman scattering study

    Full text link
    The results of micro-Raman scattering measurements performed on three different ``graphitic'' materials: micro-structured disks of highly oriented pyrolytic graphite, graphene multi-layers thermally decomposed from carbon terminated surface of 4H-SiC and an exfoliated graphene monolayer are presented. Despite its multi-layer character, most parts of the surface of the graphitized SiC substrates shows a single-component, Lorentzian shape, double resonance Raman feature in striking similarity to the case of a single graphene monolayer. Our observation suggests a very weak electronic coupling between graphitic layers on the SiC surface, which therefore can be considered to be graphene multi-layers with a simple (Dirac-like) band structure.Comment: 4 pages, 3 Figures Structure of the paper strongly modified, small changes in Fig 2 and 3. Same interpretation and same result

    Experimental observation of nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon

    Full text link
    Owing to its two dimensional electronic structure, graphene exhibits many unique properties. One of them is a wave vector and temperature dependent plasmon in the infrared range. Theory predicts that due to these plasmons, graphene can be used as a universal material to enhance nanoscale radiative heat exchange for any dielectric substrate. Here we report on radiative heat transfer experiments between SiC and a SiO2 sphere which have non matching phonon polariton frequencies, and thus only weakly exchange heat in near field. We observed that the heat flux contribution of graphene epitaxially grown on SiC dominates at short distances. The influence of plasmons on radiative heat transfer is further supported with measurements for doped silicon. These results highlight graphenes strong potential in photonic nearfield and energy conversion devices.Comment: 4 pages, 3 figure

    In situ imaging of field emission from individual carbon nanotubes and their structural damage

    Get PDF
    ©2002 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/80/856/1DOI:10.1063/1.1446994Field emission of individual carbon nanotubes was observed by in situ transmission electron microscopy. A fluctuation in emission current was due to a variation in distance between the nanotube tip and the counter electrode owing to a "head-shaking" effect of the nanotube during field emission. Strong field-induced structural damage of a nanotube occurs in two ways: a piece-by-piece and segment-by-segment pilling process of the graphitic layers, and a concentrical layer-by-layer stripping process. The former is believed owing to a strong electrostatic force, and the latter is likely due to heating produced by emission current that flowed through the most outer graphitic layers

    Weak antilocalization in epitaxial graphene: evidence for chiral electrons

    Full text link
    Transport in ultrathin graphite grown on silicon carbide is dominated by the electron-doped epitaxial layer at the interface. Weak anti-localization in 2D samples manifests itself as a broad cusp-like depression in the longitudinal resistance for magnetic fields 10 mT<B<< B < 5 T. An extremely sharp weak-localization resistance peak at B=0 is also observed. These features quantitatively agree with graphene weak-(anti)localization theory implying the chiral electronic character of the samples. Scattering contributions from the trapped charges in the substrate and from trigonal warping due to the graphite layer on top are tentatively identified. The Shubnikov-de Haas oscillations are remarkably small and show an anomalous Berry's phase.Comment: 5 pages, 4 figures. Minor change

    Plasmon assisted transport through disordered array of quantum wires

    Full text link
    Phononless plasmon assisted thermally activated transport through a long disordered array of finite length quantum wires is investigated analytically. Generically strong electron plasmon interaction in quantum wires results in a qualitative change of the temperature dependence of thermally activated resistance in comparison to phonon assisted transport. At high temperatures, the thermally activated resistance is determined by the Luttinger liquid interaction parameter of the wires.Comment: 7 pages, 1 figure, final version as publishe

    Resonant Excitation of Graphene K-Phonon and Intra-Landau-Level Excitons in Magneto-Optical Spectroscopy

    Full text link
    Precise infrared magnetotransmission experiments have been performed in magnetic fields up to 32 T on a series of multilayer epitaxial graphene samples. We observe changes in the spectral features and broadening of the main cyclotron transition when the incoming photon energy is in resonance with the lowest Landau level separation and the energy of a K point optical phonon. We have developed a theory that explains and quantitatively reproduces the frequency and magnetic field dependence of the phenomenon as the absorption of a photon together with the simultaneous creation of an intervalley, intra-Landau-level exciton, and a K phonon.Comment: Main manuscript (5 pages); Supplementary Material (18 pages

    Magnetoplasmons in quasi-neutral epitaxial graphene nanoribbons

    Full text link
    We present infrared transmission spectroscopy study of the inter-Landau-level excitations in quasi-neutral epitaxial graphene nanoribbon arrays. We observed a substantial deviation in energy of the L0(1)L_{0(-1)}\toL1(0)L_{1(0)} transition from the characteristic square root magnetic-field dependence of two-dimensional graphene. This deviation arises from the formation of upper-hybrid mode between the Landau level transition and the plasmon resonance. In the quantum regime the hybrid mode exhibits a distinct dispersion relation, markedly different from that expected for conventional two-dimensional systems and highly doped graphene

    Tuning the electron-phonon coupling in multilayer graphene with magnetic fields

    Full text link
    Magneto Raman scattering study of the E2g_{2g} optical phonons in multi-layer epitaxial graphene grown on a carbon face of SiC are presented. At 4.2K in magnetic field up to 33 T, we observe a series of well pronounced avoided crossings each time the optically active inter Landau level transition is tuned in resonance with the E2g_{2g} phonon excitation (at 196 meV). The width of the phonon Raman scattering response also shows pronounced variations and is enhanced in conditions of resonance. The experimental results are well reproduced by a model that gives directly the strength of the electron-phonon interaction.Comment: 4 pages, 3 figure

    Effect of a magnetic field on the two-phonon Raman scattering in graphene

    Full text link
    We have studied, both experimentally and theoretically, the change of the so-called 2D band of the Raman scattering spectrum of graphene (the two-phonon peak near 2700 cm-1) in an external magnetic field applied perpendicular to the graphene crystal plane at liquid helium temperature. A shift to lower frequency and broadening of this band is observed as the magnetic field is increased from 0 to 33 T. At fields up to 5--10 T the changes are quadratic in the field while they become linear at higher magnetic fields. This effect is explained by the curving of the quasiclassical trajectories of the photo-excited electrons and holes in the magnetic field, which enables us (i) to extract the electron inelastic scattering rate, and (ii) to conclude that electronic scattering accounts for about half of the measured width of the 2D peak.Comment: 11 pages, 7 figure
    corecore